Section 412.—Minimum Funding Standards

Disability mortality tables. This ruling provides mortality tables for use under section 412(1) for plan years after 1995 to calculate current liability for individuals entitled to benefits on account of disability.

Rev. Rul. 96-7

ISSUE

What alternative mortality tables may be used to calculate a plan's current liability under § 412(1) of the Internal Revenue Code for individuals who are entitled to benefits under the plan on account of disability?

LAW AND ANALYSIS

Section 412(1) provides additional funding requirements for certain underfunded defined benefit pension plans that have more than 100 participants and that are not multiemployer plans. In general, the additional funding requirements are determined based on a plan's unfunded current liability.

Section 751(a) of the Retirement Protection Act of 1994 added § 412(1)-(7)(C)(ii) to the Code, effective for plan years beginning after December 31, 1994. Section 412(1)(7)(C)(ii)

provides that, for purposes of determining current liability, the mortality table used shall be the table prescribed by the Secretary, and sets forth the basis for establishing a table. For plan years beginning before the effective date of the first tables prescribed under § 412(1)(7)(C)(ii)(II), the table must be based on the prevailing commissioners' standard table (described in § 807(d)-(5)(A)) used to determine reserves for group annuity contracts issued on January 1, 1993. Rev. Rul. 95–28, 1995–1 C.B. 74, sets forth this mortality table.

Section 412(1)(7)(C)(iii)(I) provides that, for plan years beginning after December 31, 1995, the Secretary shall establish mortality tables that may be used, in lieu of the tables under § 412(1)(7)(C)(ii), to determine current liability under § 412(1) for individuals who are entitled to benefits under the plan on account of disability. The Secretary must establish separate tables for individuals whose disabilities occurred in plan years beginning before January 1, 1995, and for individuals whose disabilities occur in plan years beginning after December 31, 1994. Under $\S 412(1)(7)(C)(iii)(II)$, the mortality table for individuals whose disabilities occur in plan years beginning after December 31, 1994, applies only with respect to individuals who are disabled within the meaning of title II of the Social Security Act and the regulations thereunder.

The alternative mortality tables provided for under § 412(l)(7)(C)(iii) are permitted to be used in the specified circumstances, but are not required to be used. For any individual for whom these alternative mortality tables are not used, the mortality table prescribed under § 412(l)(7)(C)(ii) must be used.

The alternative mortality tables provided under § 412(l)(7)(C)(iii) may be used only for individuals who are entitled to benefits under the plan on account of disability. For this purpose, an individual is entitled to benefits under a plan on account of disability if, because of the occurrence of a disability, the individual is entitled to receive a benefit to which the individual would not be entitled in the absence of the disability. For example, an individual is entitled to benefits under a plan on account of disability if, upon the occurrence of a disability at a time before the individual would have been entitled to receive an unreduced normal retirement benefit upon retire-

ment, the individual is entitled to receive the same annuity that would have been payable to the individual upon retirement at normal retirement age. As a further example, an individual is entitled to benefits under a plan on account of disability if the individual, who would not otherwise be earning service credits, is credited with years of service for the period of disability. On the other hand, an individual is not entitled to benefits on account of disability if the individual separates from the service of the employer because of a disability, but merely receives the same benefit that would have been payable if the individual had separated from service without the occurrence of the disability.

For purposes of $\S 412(1)(7)(C)(iii)$, any individual who has become entitled to benefits under a plan on account of disability continues to be considered entitled to benefits under the plan on account of disability until the individual recovers from disability and becomes entitled to different benefits under the plan than the individual would have been entitled to if the individual had not recovered.

Under § 412(1), nothing prohibits the use of an additional actuarial assumption that meets the requirements of § 412(c) regarding the probability of recovery from disability.

HOLDING

The mortality tables provided below, as applicable, may be used for plan years beginning after December 31, 1995, in lieu of the mortality table required to be used under § 412(1)(7)-(C)(ii), for purposes of determining current liability. The first mortality table provided below may be used for plan years beginning after December 31, 1995, in lieu of the mortality table required to be used under § 412(1)(7)-(C)(ii), for purposes of determining current liability for individuals entitled to benefits under the plan on account of disability, whose disabilities occurred in plan years beginning before January 1, 1995. The second mortality table provided below may be used for plan years beginning after December 31, 1995, in lieu of the mortality table required to be used under § 412(1)(7)-(C)(ii), for purposes of determining current liability for individuals entitled to benefits under the plan on account of disability, whose disabilities occur in plan years beginning after December 31, 1994. This second mortality table may be used only for individuals who are disabled within the meaning of title II of the Social Security Act and the regulations thereunder. The mortality table required to be used under $\S 412(1)(7)(C)(ii)$ must be used for individuals whose disabilities occur in plan years beginning after December 31. 1994, but who are not disabled within the meaning of title II of the Social Security Act and the regulations thereunder.

l_x male

721,264,47

707,905.93

694,278.03

680.375.11

666,192.01

651,724.99

636,970.59

621,922.79

606.612.92

590,922.88

574,923.05

558,674.00

542,220.49

525,592.21

508,806.38

491,872.79

474,804.81

457,623.99

440,358.30

423.041.21

405,706.67

388,374.88

371.050.64

353,728.52

336,395.82

319,039.81

301,662.35

284,282.98

266,936,32

249,671.14

q_x male

0.018521

0.019251

0.020025

0.020846

0.021716

0.022639

0.023624

0.024617

0.025865

0.027076

0.028263

0.029451

0.030667

0.031937

0.033281

0.034700

0.036185

0.037729

0.039325

0.040976

0.042720

0.044607

0.046684

0.049000

0.051594

0.054468

0.057612

0.061019

0.064679

0.068604

Age

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

MORTALITY TABLE FOR DISABILITIES OCCURRING IN PLAN YEARS BEGINNING BEFORE JANUARY 1, 1995

The following mortality table is the mortality table that is permitted to be used for individuals entitled to benefits under the plan on account of disability, whose disabilities occurred in plan years beginning before January 1, 1995. The table sets forth the number living based upon a starting population of one million lives at age 15 (l_x), and the annual rate of mortality (q_x) , to be used for each age and each gender.

uscu Ioi	cach age and	cach genaer.	13	217,071.11	0.000001
			74	232,542.70	0.072881
Age	l _x male	q_x male	75	215,594.76	0.076965
Age	1 _x mate	q _x mate	76	199,001.51	0.081027
15	1,000,000.00	0.006245	77	182,877.01	0.085222
16	993,755.00	0.006493	78	167,291.87	0.089592
17	987,302.55	0.006749	79	152,303.86	0.094182
18	980,639.24	0.007018	80	137,959.57	0.099034
19	973,757.12	0.007297	81	124,296.89	0.104194
20	966,651.61	0.007586	82	111,345.90	0.109705
21	959,318.59	0.007887	83	99,130.69	0.115609
22	951,752.45	0.008201	84	87,670.29	0.121952
23	943,947.13	0.008526	85	76,978.73	0.128777
24	935,899.03	0.008864	86	67,065.64	0.136128
25	927,603.22	0.009216	87	57,936.13	0.144048
26	919,054.43	0.009581	88	49,590.54	0.152581
27	910,248.97	0.009964	89	42,023.97	0.161771
28	901,179.25	0.010358	90	35,225.71	0.171662
29	891,844.84	0.010768	91	29,178.79	0.182297
30	882,241.45	0.011190	92	23,859.59	0.193720
31	872,369.17	0.011624	93	19,237.51	0.205975
32	862,228.75	0.012071	94	15,275.06	0.219106
33	851,820.79	0.012531	95	11,928.20	0.234086
34	841,146.62	0.013022	96	9,135.98	0.248436
35	830,193.21	0.013421	97	6,866.27	0.263954
36	819,051.19	0.013892	98	5,053.89	0.280803
37	807,672.93	0.014380	99	3,634.74	0.299154
38	796,058.59	0.014889	100	2,547.40	0.319185
39	784,206.07	0.015420	101	1,734.31	0.341086
40	772,113.62	0.015976	102	1,142.76	0.365052
41	759,778.33	0.016562	103	725.59	0.393102
42	747,194.88	0.017179	104	440.36	0.427255
43	734,358.82	0.017831	105	252.21	0.469531

Δ σе	l _x male	a male	Δαρ	l _x female	q _x female	Δge	l _x male	q _x male
Age		q_x male	Age 69	458,649.12	0.031848	Age	**	
106	133.79	0.521945	70	444,042.06	0.033123	15	1,000,000.00	0.022010
107	63.96	0.586518	71	429,334.06	0.033123	16	977,990.00	0.022502
108	26.45	0.665268	72	414,343.43	0.036986	17 18	955,983.27	0.023001 0.023519
109	8.85	0.760215	73	399,018.52	0.039352	18	933,994.70 912,028.08	0.023319
110	2.12	1.000000	74	383,316.35	0.042033	20	890,098.36	0.024043
			75	367,204.41	0.044540	21	868,217.07	0.024383
Age	l _x female	q_x female	76	350,849.13	0.047104	22	846,396.17	0.025133
15	1,000,000.00	0.004667	77	334,322.73	0.049840	23	824,646.33	0.026269
16	995,333.00	0.004873	78	317,660.08	0.052794	24	802,983.70	0.026857
17	990,482.74	0.005086	79	300,889.54	0.056017	25	781,417.96	0.027457
18	985,445.15	0.005312	80	284,034.61	0.059556	26	759,962.57	0.028071
19	980,210.46	0.005546	81	267,118.64	0.063460	27	738,629.66	0.028704
20	974,774.22	0.005790	82	250,167.29	0.067777	28	717,428.04	0.029345
21	969,130.27	0.006046	83	233,211.70	0.072556	29	696,375.11	0.029999
22	963,270.91	0.006313	84	216,290.80	0.077845	30	675,484.55	0.030661
23	957,189.78	0.006591	85	199,453.64	0.083693	31	654,773.52	0.031331
24	950,880.94	0.006881	86	182,760.77	0.090148	32	634,258.81	0.032006
25	944,337.93	0.007185	87	166,285.25	0.097260	33	613,958.72	0.032689
26	937,552.86	0.007502	88	150,112.35	0.105075	34	593,889.03	0.033405
27	930,519.34	0.007834	89	134,339.29	0.113643	35	574,050.16	0.034184
28	923,229.65	0.008179	90	119,072.57	0.123012	36	554,426.83	0.034981
29	915,678.56	0.008537	91	104,425.22	0.133216	37	535,032.43	0.035796
30	907,861.41	0.008905	92	90,514.11	0.143634	38	515,880.41	0.036634
31	899,776.90	0.009282	93 94	77,513.20	0.155581	39	496,981.64	0.037493
32	891,425.18	0.009666	94 95	65,453.62 54,380.11	0.169181 0.184537	40	478,348.31	0.038373
33	882,808.66	0.010061	93 96	44,344.97	0.184337	41	459,992.65	0.039272
34	873,926.72	0.010489	90 97	35,398.06	0.222043	42	441,927.82	0.040189
35	864,760.10	0.010885	98	27,538.17	0.243899	43	424,167.18	0.041122
36	855,347.19	0.011246	99	20,821.64	0.268185	44	406,724.58	0.042071
37	845,727.96	0.011599	100	15,237.59	0.295187	45	389,613.27	0.043033
38	835,918.36	0.011947	100	10,739.65	0.325225	46	372,847.04	0.044007
39	825,931.64	0.012292	102	7,246.85	0.358897	47	356,439.16	0.044993
40	815,779.29	0.012636	103	4,645.98	0.395842	48	340,401.90	0.045989
41	805,471.10	0.012981	104	2,806.90	0.438360	49	324,747.15	0.046993
42	795,015.28	0.013330	105	1,576.47	0.487816	50	309,486.31	0.048004
43	784,417.73	0.013684	106	807.44	0.545886	51 52	294,629.73	0.049021
44 45	773,683.76	0.014045	107	366.67	0.614309	52 52	280,186.69	0.050042
45 46	762,817.37	0.014417 0.014800	108	141.42	0.694884	53 54	266,165.58 252,573.31	0.051067
46 47	751,819.83 740,692.90	0.014800	109	43.15	0.789474	55		0.052093 0.053120
48	729,436.59	0.015197	110	9.08	1.000000	56	239,416.00 226,698.23	0.053120
4 8 49	718,049.35	0.015011				57	214,423.88	0.055089
50	706,529.69	0.016495		ITY TABLE I		58	202,611.48	0.055069
51	694,875.48	0.016970		ITIES OCCUR		59	191,251.46	0.057080
52	683,083.44	0.017470		EARS BEGINN	NING AFTER	60	180,334.83	0.057000
53	671,149.97	0.017997	DECEMB	ER 31, 1994		61	169,854.13	0.059172
54	659,071.29	0.018553	The fol	lowing mortali	ity table is the	62	159,803.52	0.060232
55	646,843.54	0.019140			permitted to be	63	150,178.23	0.061303
56	634,462.95	0.019761			tled to benefits	64	140,971.86	0.062429
57	621,925.33	0.020417			nt of disability,	65	132,171.12	0.063669
58	609,227.48	0.021111			in plan years	66	123,755.92	0.065082
59	596,366.08	0.021845			ber 31, 1994.	67	115,701.64	0.066724
60	583,338.46	0.022621			y be used only	68	107,981.56	0.068642
61	570,142.76	0.023441			disabled within	69	100,569.49	0.070834
62	556,778.05	0.024307			of the Social	70	93,445.75	0.073284
63	543,244.44	0.025222			gulations there-	71	86,597.67	0.075979
64	529,542.73	0.026187			rth the number	72	80,018.07	0.078903
65	515,675.60	0.027205	living bas	ed upon a star	ting population	73	73,704.40	0.082070
66	501,646.64	0.028278	of one mi	llion lives at a	ge 15 (l_x) , and	74	67,655.48	0.085606
67	487,461.08	0.029408			lity (q_x) , to be	75	61,863.77	0.088918
68	473,125.82	0.030598	used for o	each age and	each gender.	76	56,362.97	0.092208

Age	l_x male	q_x male	Age	l _x female	q_x female
77	51,165.85	0.095625	35	784,858.55	0.017654
78	46,273.11	0.099216	36	771,002.66	0.018204
79	41,682.08	0.103030	37	756,967.32	0.018770
80	37,387.58	0.107113	38	742,759.05	0.019355
81	33,382.88	0.111515	39	728,382.95	0.019957
82	29,660.19	0.116283	40	713,846.61	0.020579
83	26,211.21	0.121464	41	699,156.36	0.021219
84	23,027.49	0.127108	42	684,320.96	0.021880
85	20,100.52	0.133262	43	669,348.02	0.022561
86	17,421.88	0.139974	44	654,246.86	0.023263
87	14,983.27	0.147292	45	639,027.11	0.023988
88	12,776.35	0.155265	46	623,698.13	0.024734
89	10,792.63	0.163939	47	608,271.58	0.025504
90	9,023.30	0.173363	48	592,758.22	0.026298
91	7,458.99	0.183585	49	577,169.87	0.027117
92	6,089.63	0.194653	50	561,518.75	0.027961
93	4,904.27	0.206615	51	545,818.12	0.028832
94	3,890.97	0.219519	52	530,081.10	0.029730
95	3,036.83	0.234086	53	514,321.79	0.030655
96	2,325.95	0.248436	54	498,555.25	0.031609
97	1,748.10	0.263954	55	482,796.42	0.032594
98	1,286.68	0.280803	56	467,060.15	0.033608
99	925.38	0.299154	57	451,363.19	0.034655
100	648.55	0.319185	58	435,721.20	0.035733
101	441.54	0.341086	59	420,151.58	0.036846
102	290.94	0.365052	60	404,670.67	0.037993
103	184.73	0.393102	61	389,296.02	0.039176
104	112.11	0.427255	62	374,044.96	0.040395
105	64.21	0.469531	63	358,935.41	0.041653
106	34.06	0.521945	64	343,984.68	0.042950
107	16.28	0.586518	65	329,210.53	0.044287
108	6.73	0.665268	66	314,630.79	0.045666
109	2.25	0.760215	67	300,262.86	0.046828
110	0.54	1.000000	68	286,202.15	0.048070
			69	272,444.41	0.049584
Age	l _x female	q_x female	70	258,935.53	0.051331
			71	245,644.11	0.053268
15	1,000,000.00	0.007777	72	232,559.14	0.055356
16	992,223.00	0.008120	73	219,685.59	0.057573
17	984,166.15	0.008476	74	207,037.63	0.059979
18	975,824.36	0.008852	75	194,619.72	0.062574
19	967,186.36	0.009243	76	182,441.59	0.065480
20	958,246.66	0.009650	77	170,495.31	0.068690
21	948,999.58	0.010076	78	158,783.99	0.072237
22	939,437.46	0.010521	79	147,313.91	0.076156
23	929,553.63	0.010984	80	136,095.07	0.080480
24	919,343.42	0.011468	81	125,142.14	0.085243
25	908,800.39	0.011974	82	114,474.65	0.090480
26	897,918.41	0.012502	83	104,116.98	0.096224
27	886,692.64	0.013057	84	94,098.43	0.102508
28	875,115.09	0.013632	85	84,452.59	0.109368
29	863,185.52	0.014229	86	75,216.18	0.116837
30	850,903.25	0.014843	87	66,428.15	0.124948
31	838,273.30	0.015473	88	58,128.08	0.133736
32	825,302.69	0.016103	89	50,354.26	0.143234
33	812,012.85	0.016604	90	43,141.82 36,520.54	0.153477
34	798,530.18	0.017121	91	30,320.34	0.164498

EFFECTIVE DATE

Age

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

l_x female

30,512.99

25,132.57

20,382.24

16,253.39

12,725.67

9,767.37

7,336.57

5,382.92

3,850.09

2,681.85

1,803.85

1,156.23

698.55

392.33

200.95

91.25

35.20

10.74

2.26

q_x female

0.176332

0.189011

0.202571

0.217045

0.232467

0.248870

0.266289

0.284758

0.303433

0.327385

0.359020

0.395842

0.438360

0.487816

0.545886

0.614309

0.694884

0.789474

1.000000

This revenue ruling is effective for plan years beginning after December 31, 1995.

DRAFTING INFORMATION

The principal author of this revenue ruling is Edward Sypher of the Employee Plans Division. For further information regarding this revenue ruling, please contact the Employee Plans Division's taxpayer assistance telephone service at (202) 622-6076 between 2:30 and 4:00 Eastern time (not a toll-free number) Monday through Thursday. Mr. Sypher's number is (202) 622-6245 (also not a toll-free number).

Section 483. Interest on Certain Deferred Payments

26 CFR 1.483–1: Computation of interest on certain deferred payments.

As defined by section 1274A, the definitions for both "qualified debt instruments" and "cash method debt instruments" have dollar ceilings on the stated principal amount. The limits to the stated principal amount are adjusted for inflation for sales or exchanges occurring in the 1996 calendar year. See Rev. Rul. 96–4, page 16.

Section 761.—Definitions

The Service will not rule on certain issues raised in connection with the transfer of a life

insurance policy to an unincorporated organization. See Rev. Proc. 96–12, page 30.

Section 1274. Determination of Issue Price in the Case of Certain Debt Instruments Issued for Property

26 CFR 1.1274A-1: Special rules for certain transactions where stated principal amount does not exceed \$2,800,000.

As defined by section 1274A, the definitions for both "qualified debt instruments" and "cash method debt instruments" have dollar ceilings on the stated principal amount. The limits to the stated principal amount are adjusted for inflation for sales or exchanges occurring in the 1996 calendar year. See Rev. Rul. 96–4, this page.